Section titled Problem
Problem
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
Section titled Solution
Solution
Section titled Recursion
Recursion
- Find a base recursive call, in this case is condition where input equals with 0 will return 0 and 1 will return 1
- Then from the description above, call the recursive with F(n-1) + F(n-2)
func fibonacci(n int) int{
if n==0 || n==1{
return n
}
return fibonacci(n-1)+fibonacci(n-2)
}
Section titled Dynamic%20programming
Dynamic programming
- First step similar with recursive, early return if n equals 0 or 1
- Use memoize to compose calculation
func fib(n int) int {
if n==0 || n==1{
return n
}
dp:=make([]int, n+1)
dp[0]=0
dp[1]=1
for i:=2;i<n+1;i++{
dp[i] = dp[i-2]+dp[i-1]
}
return dp[n]
}
But let’s remove unnecessary array
func fib(n int) int {
if n==0 || n==1{
return n
}
a, b, ans:= 0, 1, 0
for i:= 1; i < n; i++{
ans = a + b;
a = b;
b = ans;
}
return ans;
}